Direct product G=NxQ with N=C33 and Q=D6
Semidirect products G=N:Q with N=C33 and Q=D6
extension | φ:Q→Aut N | d | ρ | Label | ID |
C33:1D6 = He3:D6 | φ: D6/C1 → D6 ⊆ Aut C33 | 9 | 6+ | C3^3:1D6 | 324,39 |
C33:2D6 = S3xC32:C6 | φ: D6/C1 → D6 ⊆ Aut C33 | 18 | 12+ | C3^3:2D6 | 324,116 |
C33:3D6 = C3xC32:D6 | φ: D6/C1 → D6 ⊆ Aut C33 | 18 | 6 | C3^3:3D6 | 324,117 |
C33:4D6 = He3:5D6 | φ: D6/C1 → D6 ⊆ Aut C33 | 18 | 12+ | C3^3:4D6 | 324,121 |
C33:5D6 = S3xHe3:C2 | φ: D6/C1 → D6 ⊆ Aut C33 | 18 | 6 | C3^3:5D6 | 324,122 |
C33:6D6 = He3:6D6 | φ: D6/C1 → D6 ⊆ Aut C33 | 27 | | C3^3:6D6 | 324,124 |
C33:7D6 = C2xC3wrS3 | φ: D6/C2 → S3 ⊆ Aut C33 | 18 | 3 | C3^3:7D6 | 324,68 |
C33:8D6 = C2xC33:S3 | φ: D6/C2 → S3 ⊆ Aut C33 | 18 | 6+ | C3^3:8D6 | 324,77 |
C33:9D6 = C6xC32:C6 | φ: D6/C2 → S3 ⊆ Aut C33 | 36 | 6 | C3^3:9D6 | 324,138 |
C33:10D6 = C2xHe3:4S3 | φ: D6/C2 → S3 ⊆ Aut C33 | 54 | | C3^3:10D6 | 324,144 |
C33:11D6 = C6xHe3:C2 | φ: D6/C2 → S3 ⊆ Aut C33 | 54 | | C3^3:11D6 | 324,145 |
C33:12D6 = C2xHe3:5S3 | φ: D6/C2 → S3 ⊆ Aut C33 | 36 | 6 | C3^3:12D6 | 324,150 |
C33:13D6 = C3xS3xC3:S3 | φ: D6/C3 → C22 ⊆ Aut C33 | 36 | | C3^3:13D6 | 324,166 |
C33:14D6 = C3xC32:4D6 | φ: D6/C3 → C22 ⊆ Aut C33 | 12 | 4 | C3^3:14D6 | 324,167 |
C33:15D6 = S3xC33:C2 | φ: D6/C3 → C22 ⊆ Aut C33 | 54 | | C3^3:15D6 | 324,168 |
C33:16D6 = C3:S32 | φ: D6/C3 → C22 ⊆ Aut C33 | 18 | | C3^3:16D6 | 324,169 |
C33:17D6 = C33:17D6 | φ: D6/C3 → C22 ⊆ Aut C33 | 36 | | C3^3:17D6 | 324,170 |
C33:18D6 = S32xC32 | φ: D6/S3 → C2 ⊆ Aut C33 | 36 | | C3^3:18D6 | 324,165 |
C33:19D6 = C3:S3xC3xC6 | φ: D6/C6 → C2 ⊆ Aut C33 | 36 | | C3^3:19D6 | 324,173 |
C33:20D6 = C6xC33:C2 | φ: D6/C6 → C2 ⊆ Aut C33 | 108 | | C3^3:20D6 | 324,174 |
C33:21D6 = C2xC34:C2 | φ: D6/C6 → C2 ⊆ Aut C33 | 162 | | C3^3:21D6 | 324,175 |
Non-split extensions G=N.Q with N=C33 and Q=D6
extension | φ:Q→Aut N | d | ρ | Label | ID |
C33.1D6 = C32:D18 | φ: D6/C1 → D6 ⊆ Aut C33 | 18 | 12+ | C3^3.1D6 | 324,37 |
C33.2D6 = S3xC9:C6 | φ: D6/C1 → D6 ⊆ Aut C33 | 18 | 12+ | C3^3.2D6 | 324,118 |
C33.3D6 = C2xC32:D9 | φ: D6/C2 → S3 ⊆ Aut C33 | 54 | | C3^3.3D6 | 324,63 |
C33.4D6 = C2xC32:2D9 | φ: D6/C2 → S3 ⊆ Aut C33 | 36 | 6 | C3^3.4D6 | 324,75 |
C33.5D6 = C6xC9:C6 | φ: D6/C2 → S3 ⊆ Aut C33 | 36 | 6 | C3^3.5D6 | 324,140 |
C33.6D6 = C2xC33.S3 | φ: D6/C2 → S3 ⊆ Aut C33 | 54 | | C3^3.6D6 | 324,146 |
C33.7D6 = C3xS3xD9 | φ: D6/C3 → C22 ⊆ Aut C33 | 36 | 4 | C3^3.7D6 | 324,114 |
C33.8D6 = D9xC3:S3 | φ: D6/C3 → C22 ⊆ Aut C33 | 54 | | C3^3.8D6 | 324,119 |
C33.9D6 = S3xC9:S3 | φ: D6/C3 → C22 ⊆ Aut C33 | 54 | | C3^3.9D6 | 324,120 |
C33.10D6 = C32:5D18 | φ: D6/C3 → C22 ⊆ Aut C33 | 36 | 4 | C3^3.10D6 | 324,123 |
C33.11D6 = D9xC3xC6 | φ: D6/C6 → C2 ⊆ Aut C33 | 108 | | C3^3.11D6 | 324,136 |
C33.12D6 = C6xC9:S3 | φ: D6/C6 → C2 ⊆ Aut C33 | 108 | | C3^3.12D6 | 324,142 |
C33.13D6 = C2xC32:4D9 | φ: D6/C6 → C2 ⊆ Aut C33 | 162 | | C3^3.13D6 | 324,149 |
x
:
Z
F
o
wr
Q
<